Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias.
نویسندگان
چکیده
Genome-wide single nucleotide polymorphism analysis has revealed large-scale cryptic regions of acquired homozygosity in the form of segmental uniparental disomy in approximately 20% of acute myeloid leukemias. We have investigated whether such regions, which are the consequence of mitotic recombination, contain homozygous mutations in genes known to be mutational targets in leukemia. In 7 of 13 cases with uniparental disomy, we identified concurrent homozygous mutations at four distinct loci (WT1, FLT3, CEBPA, and RUNX1). This implies that mutation precedes mitotic recombination which acts as a "second hit" responsible for removal of the remaining wild-type allele, as has recently been shown for the JAK2 gene in myeloproliferative disorders.
منابع مشابه
Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias.
Genome-wide analysis of single nucleotide polymorphisms in 64 acute myeloid leukemias has revealed that approximately 20% exhibited large regions of homozygosity that could not be accounted for by visible chromosomal abnormalities in the karyotype. Further analysis confirmed that these patterns were due to partial uniparental disomy (UPD). Remission bone marrow was available from five patients ...
متن کاملSegmental uniparental disomy is a commonly acquired genetic event in relapsed acute myeloid leukemia.
Despite advances in the curative treatment of acute myeloid leukemia (AML), recurrence will occur in the majority of cases. At diagnosis, acquisition of segmental uniparental disomy (UPD) by mitotic recombination has been reported in 15% to 20% of AML cases, associated with homozygous mutations in the region of loss of heterozygosity. This study aimed to discover if clonal evolution from hetero...
متن کاملAssessment of submicroscopic genetic lesions by single nucleotide polymorphism arrays in a child with acute myeloid leukemia and FLT3-internal tandem duplication.
The same FLT3-internal tandem duplication (ITD) positive clone was detected at diagnosis and relapse, but not at birth, in a child with M1 acute myeloid leukemia. Single nucleotide polymorphism arrays demonstrated that chromosome 13 acquired uniparental disomy, in association with del(9q), represented a progressive event in the course of the disease, and it was responsible for the homozygous FL...
متن کاملThe Relationship between Mutation in HOXB1 Gene and Acute Myeloid Leukemia
Background: HOX genes are an exceedingly preserved family of homeodomain-involving transcription factors. They are related to a number of malignancies, comprising acute myeloid leukemia (AML). This study aimed to evaluate the effect of HOXB1 7bp deletion mutation on HOXB1gene expression in 36 individuals. Materials and Methods: The present cross-sectional study was done on a large Iranian fami...
متن کاملUse of Single Nucleotide Polymorphism Array Technology to Improve the Identification of Chromosomal Lesions in Leukemia
Acute leukemias are characterized by recurring chromosomal and genetic abnormalities that disrupt normal development and drive aberrant cell proliferation and survival. Identification of these abnormalities plays important role in diagnosis, risk assessment and patient classification. Until the last decade methods to detect these aberrations have included genome wide approaches, such as convent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 20 شماره
صفحات -
تاریخ انتشار 2005